Cymatics Could Help Surgeons Identify Cancer Cells for Tumor Removal

Cymatics Could Help Surgeons Identify Cancer Cells for Tumor Removal

The study of cymatics has fascinated researchers for years. Now, one scientist has found a practical way to use the phenomenon to enhance targeted cancer treatments.

The study of cymatics, or the spontaneous, geometric patterns produced by sound when it encounters water or particulate matter on a surface, was coined by Swiss researcher Hans Jenny in 1967. Jenny documented the patterns that appeared when putting sand or fluid on a metal plate that was connected to a sonic frequency oscillator. 

Today, acoustic-physics scientist John Stuart Reid has partnered with Dr. Sungchul Ji at Rutgers University, to apply cymatic imaging to identify cancer cells compared to healthy cells. The two hope to develop this technology to allow surgeons the ability to more precisely target cancerous cells when removing tumors.

“So, what we do with the Cymascope instrument is to literally imprint sound onto the surface and indeed the sub-surface of pure, medical-grade water and thereby make it visible with specific lighting techniques. It’s actually quite difficult for a surgeon to remove a tumor in its entirety,” Reid said.

While this type of technology would aid any procedure requiring the surgical removal of a tumor, it would be particularly groundbreaking for brain surgery and other highly sensitive areas in which healthy cells must be carefully navigated.

So, what do cancer cells look like compared to healthy cells?

“What we found was that the sounds of cancer cells are generally fairly skewed and, well, I would call them subjectively ugly,” Reid said. “Whereas the sounds from healthy cells, generally the sounds are harmonic and therefore the patterns that are created, these cymatic patterns, are very symmetrical by comparison. As the cell has a kind of respiration, it’s literally making sound all of the time, so all of our cells are singing all of the time. Actually, it’s really interesting to know that they’re singing in the audible spectrum.”

“So, in other words, if we could hear those sounds, well it would actually drive us nuts, wouldn’t it? So, it’s probably just as well that we can’t hear them, however, they are literally in the audible spectrum. It’s just a question of having specific tools that allow us to listen in to those sounds and then amplify those sounds so that we can then hear them.”

As Reid and his colleagues continue to develop the Cymascope for targeted cancer surgery, they are also looking into a number of other applications for the technology across multiple scientific disciplines. 

“We are at the very beginning, you could say, of this new revolution in science in terms of making sound visible,”  Reid said. “It’s extremely important because sound actually underpins virtually every science. If you think of biology even, all the biochemical reactions that are occurring in our body all of the time, they’re all based on sound if you think of it from the atomic viewpoint. So, being able to make sound visible is a really wonderful way of gaining new insights into almost every science.”

Professor Says He Found Equation That Makes Time Travel Possible

Professor Says He Found Equation That Makes Time Travel Possible

In 1895, author H.G. Wells captured the imagination of his readers by having his protagonist, a Victorian English scientist, bravely climb into a time machine and set off into uncharted territory. Wells is credited with coining the phrase “time travel,” although the idea of exiting one timeframe and entering into another has intrigued humankind far into the misty past.

To this day, many still feel that it's entirely possible to traverse time if we could only discover how. But now, the time may have finally come: A prominent astrophysicist recently claimed that he now has the mathematics to make time travel a reality.

Here we are, a hundred years since the introduction of Einstein’s Theory of General Relativity, and science is closing in on time travel. Astrophysicist Ron Mallett, professor emeritus of physics, has been studying time travel long before embarking on his professional career.

Now in his 70s, he has at long last — at least theoretically — discovered a way to travel into the past. Putting his mathematical equation to work, he has come up with a prototype device with functionality that seems plausible, although he has yet to wow his contemporaries who are standing in the wings to see what comes next.

Read Article

More In General Science

Our unique blend of yoga, meditation, personal transformation, and alternative healing content is designed for those seeking to not just enhance their physical, spiritual, and intellectual capabilities, but to fuse them in the knowledge that the whole is always greater than the sum of its parts.

Use the same account and membership for TV, desktop, and all mobile devices. Plus you can download videos to your device to watch offline later.

Desktop, laptop, tablet, phone devices with Gaia content on screens

Discover what Gaia has to offer.

The video streaming platform exploring General Science, and Science & Technology

Testing message will be here

Discover what Gaia has to offer.

Testing message will be here