Science Says Wormhole Travel is Real; Can We Use it for Exotic Propulsion?

Wormhole Travel Now Possible

Once believed to be sci-fi fantasy, new research suggests we may be able to achieve interstellar travel using wormholes as shortcuts through spacetime.

Recently, physicist Pascal Koiran at Ecole Normale Supérieure de Lyon in France published a pre-print study detailing the potential that matter could enter the event horizon of a black hole and pass through a wormhole and exit out the other end intact. Though still highly theoretical, wormholes are believed to be incredibly unstable as they exist as a tunnel between a black hole and a white hole in another part of the universe. 

But because nothing, including light, can escape a black hole once it has crossed its event horizon, physicists have believed that matter would need to somehow enter the wormhole outside of the event horizon in order to safely pass through.

Dr. Simeon Hein, director of the Institute for Resonance, explains the mind-bending physics of this theoretical phenomenon.

“So the idea people were beginning to think, ‘well, what happens to the matter and energy that gets condensed and condensed into a black hole?’” Dr. Hein said. “The idea was that it had to be ejected somewhere else beyond that point in space. And that became the idea of a wormhole to another point in spacetime where all the matter and energy would be ejected from the black hole to conserve this idea of symmetry which is the foundation of modern physics — that there’s kind of a basic symmetry to the universe. And so the other side of the wormhole is a white hole.”

If wormholes have been conceptualized by theoretical physics for decades, what is so novel about the mathematics proposed in this recent paper?

“Physicist Pascal Koiran in France, he looked at another way to measure what’s going on in the mathematics of black holes. He used a different metric than Einstein would have used because back in the 1950s, two different physicists, David Finkelstein and Sir Arthur Eddington of the Royal Society in the UK, both proposed that there was this point of no return in the black hole where once you got past a certain point, it was no longer symmetrical, you couldn’t leave anymore, the so-called Schwarzschild radius,” Dr. Hein said.

“Past this point, you would just keep getting more compressed and you would have to go through the wormhole. So, using the so-called Finkelstein-Eddington metric — and a metric, by the way, is kind of the idea of a standard unit of measurement, a standard unit of anything: speed, direction, or position — using this measurement Koiran was able to show that it’s actually more stable than you think; that there is some stability even at the highest level of gravitational compression in a black hole. This would suggest that moving through it, maybe something really would survive.”

While these abstract ideas describing theoretical phenomena light-years away are a fun thought experiment, what kind of practical application could they have for us here on earth, if any?

“What we’re talking about is creating other types of gravitational fields, objects that can create their own inertial and gravitational fields — antigravity. So could this be dangerous? It could result in exotic propulsion systems,” Dr. Hein said.

“ In fact, this could already be a classified topic within the US military because we know, all the people who have looked at these gravitational effects, a lot of it has been funded by the military going all the way back to the 1950s including the US Air Force. So, what we’re touching on here, it’s potentially a very important topic for propulsion and transportation, even the possibilities of weaponization, which is something we don’t want to think about, but we’re talking about real physics here and how matter behaves when it’s compressed to a high degree when the gravitational metrics change and so forth. So, what started out as something really far away, the idea of black holes as just a theoretical possibility has now become something where it could be something we see right here on Earth.”



Astronomers Find Anomaly That Defies Understanding of the Universe

Arc in Space Defies Understanding of Universe

A new discovery in space may make us rethink everything we know about the universe.

Scientists at the University of Central Lancashire in the UK, have discovered a giant arc—an extremely large crescent structure of galaxies in distant space. Ph.D. candidate Alexia Lopez, who made the discovery, said, “It’s so big that it’s hard to explain with our current theories.”

The Cosmological Principle states that the universe is homogenous and isotropic, meaning the universe looks the same in all orientations. So how does the giant arc challenge our way of thinking about the universe?

Astronomer and Gaia News contributor Marc D’Antonio said, “this giant arc is really interesting because we’ve seen large-scale structures before in the universe, but nothing of this size. The proportion of this is something that’s actually outside our understanding of current cosmology.”

“What’s interesting about that is, this particular arc, it’s about 9.2 billion light-years away from us, and it’s about 3.4 billion light-years in size. Now keep in mind, that’s a good fraction of the size of the known universe, which is somewhere in the order of 91 or 92 billion light-years in diameter.”

Watch more:

Read Article

More In General Science

Our unique blend of yoga, meditation, personal transformation, and alternative healing content is designed for those seeking to not just enhance their physical, spiritual, and intellectual capabilities, but to fuse them in the knowledge that the whole is always greater than the sum of its parts.


Use the same account and membership for TV, desktop, and all mobile devices. Plus you can download videos to your device to watch offline later.

Desktop, laptop, tablet, phone devices with Gaia content on screens

Discover what Gaia has to offer.

Testing message will be here